Income-levels-Feature-Image

How to predict income levels using machine learning

Introduction The ability to extract meaningful insights from raw data is more crucial now than ever. Among the many datasets available for analysis, the “Adult Census Income” data can be used to understand the socio-economic factors that influence income levels. This dataset, collected from the 1994 U.S. Census, includes a variety of demographic information, such…

Heart-disease-feature-image

How to predict heart disease treatment using Python

Introduction Heart disease remains one of the leading causes of morbidity and mortality worldwide. Hence, understanding the factors that contribute to heart disease and the treatments that can mitigate its effects is crucial for improving patient outcomes. This project will explore a dataset related to heart attack patients and analyse various demographic, lifestyle, and clinical…

Call centre Feature Image

How to analyse call-centre-sentiments data using Python

Introduction Customer service quality can make or break a company’s reputation. Call-centres are often at the frontline of customer interactions, making them a crucial component of customer satisfaction strategies. To ensure that these interactions meet customer expectations, it’s essential to analyse and understand the factors that contribute to positive or negative experiences. In this project,…

Retail Insights-Feature Image

How to analyse and unlock retail insights from a superstore data using Python

Introduction The vast amounts of retail data that accumulate from day-to-day transactions can provide valuable insights into product performance, customer segmentation, and market trends. In this project, we will carry out a detailed analysis of a retail dataset, exploring various aspects such as sales trends, geographical performance, and customer segmentation using RFM (Recency, Frequency, Monetary)…

Feature-image - electric cars

How to analyse Electric Vehicles adoption rates using Python

Introduction The automotive industry is undergoing a profound transformation, with electric vehicles (EVs) at the forefront of this revolution. As governments, consumers, and manufacturers alike recognise the environmental and economic benefits of EVs, adoption rates are soaring, especially in forward-thinking regions like Washington State. This project delves into a comprehensive analysis of EV adoption trends…

Feature Image - Fraud

How to predict financial fraud using Python

Introduction Fraudulent activities have become increasingly sophisticated, posing significant risks to financial institutions and consumers alike. Detecting and preventing fraud has become a critical focus for businesses as they strive to protect their assets and customer trust. In this beginner’s data analysis project, we will carry out an exploratory data analysis (EDA) of financial transaction…

Stock-trends-Analysis

How to analyse warehouse stock trends with Python

Efficient warehouse management is essential for maintaining a smooth supply chain and ensuring customer satisfaction. A well-organised warehouse not only reduces operational costs but also enhances the ability to meet customer demand promptly. In this project, we will carry out a comprehensive analysis of warehouse stock trends, utilising Python programming to provide insights into product…